

CCC Annual Report UIUC, August 14, 2013

Meniscus Region Thermo-Fluid Model For Predicting Transient Heat Transfer and Slag Consumption

ASM Jonayat

Graduate Research Assistant

Department of Mechanical Science & Engineering University of Illinois at Urbana-Champaign

Outline

- Objectives
- Model Description
- Previous work
- Heat Transfer Validation
 - Experiment Procedure and measurements obtained Badri and Cramb
 - Domain, Boundary conditions , mesh and material properties for model
 - Steady state Heat flux and temperature contours
 - Animation of 1 cycle of oscillation in meniscus region
 - Comparison with measured temperature
- Slag Consumption Validation
 - Domain and BCs for model
 - Animation of 1 cycle of oscillation
 - Model prediction Vs. measured values at plant
- Parametric Studies
 - Casting Speed
 - Stroke
 - Frequency
 - Modification Ratio
 - Conclusions
- Future Work

2

Objectives

- Develop a transient thermo-fluid model of meniscus behavior
 - Incorporate governing physical phenomena
- Validate model with
 - thermocouple measurements
 - slag consumption measurements

Predict

- Transient heat flux near meniscus region.
- Transient temperature profile in mold, slag and steel region.
- Thickness of liquid slag layer above meniscus.
- Transient flow behavior of the slag in the meniscus region.
- Effect of casting and mold oscillation parameters on slag consumption:
 - · Casting speed
 - Frequency
 - Stroke
 - Modification Ratio

University of Illinois at Urbana-Champaign

Meniscus Phenomena

Metals Processing Simulation Lab

3

ASM Jonayat

Sengupta, J., and B. G. Thomas, "Visualization of Hook and Oscillation Mark Formation Mechanism in Ultra-Low Carbon Steel Slabs During Continuous Casting," JOMe, (Journal of Metals – electronic edition), December 2006.

Model Description

- 2D simulation of the centerline of the Wide/Narrow face of the mold as the simplification of the 3D mold.
- Total slag thickness and Solid shell thickness are fixed and are not part of the solution domain but calculated based on actual casting conditions using CON1D.
- Only a small region beside the mold hot face is modeled.
- solidification of slag is modeled by temperature dependent properties.
- Steel properties and temperature kept constant to model liquid steel and constant supply of heat.

Equations to solve-

- 1. Fluid Flow k-ω SST Model
- 2. Heat Transfer Transient 2-D Energy Equation

3. Interface between Slag and molten Steel

VOF Model – Explicit Scheme (2 non-interpenetrating phases)

ASM Jonayat

5

- Surface Tension
- Wall Adhesion Model

Pressure-Velocity Coupling – PISO for Transient VOF Geo-Reconstract for surface tracking Pressure Interpolation Scheme - PRESTO!

Metals Processing Simulation Lab

Previous Work: CCC 2012

University of Illinois at Urbana-Champaign

on on casting consortium

Badri Experiment: Procedure and Casting Conditions

Step	Description	Time
1	Mold simulator placed atop the furnace crucible containing the liquid steel and mold flux	
2	Oscillator drive activated to start the oscillation of the mold	
3	Mold and extractor lowered into the bath	>=2sec
4	3 inch of the hot face is exposed to the liquid steel	
5	Allow sometime to grow the shell to prevent tearing during extraction	3 sec (ref: Badri Paper, 2005)
6	Extractor lowered at constant velocity for additional 3 inches	6 sec
7	Entire assembly is removed from the furnace	>= 3 sec

Casting Condition:

Stroke = 6.3 mm Oscillation Frequency = 1.3 Hz Casting speed = 12.7 mm/s Liquid Pool Depth = 6.5 mm

A. Badri, T. T. Natarajan, C. C. Snyder, K. D. Powers, F. J. Mannion, and A. W. Cramb: Met Trans B, 2005

8

Mesh and "Sliding"

Casting Conditions & Material Properties

Steel Properties:

Puous asting Consortium

- Constant properties for Steel was used
 - Density = 7000 Kg/m³
 - Specific Heat, Cp = 700 J/Kg-K
 - Thermal Conductivity = 30 W/m-K
 - Viscosity = 0.0063 Kg/m-s
 - Melting Temperature = 1531.87° C
 - Solidification Temperature = 1518.7°C

Casting Conditions:

Stroke = 6.3 mm Sinusoidal Oscillation Frequency = 1.3 Hz Casting speed = 12.7 mm/s = 0.762 m/min

Temperature Contour: Slag & Mold Region

tinuous Casting Consortium

University of Illinois at Urbana-Champaign · Metals Processing Simulation Lab · ASM Jonayat · 16

Transient Case: Temperature Contour

Model TC Predictions

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • ASM Jonayat • 22

University of Illinois at Urbana-Champaign · Metals Processing Simulation Lab · ASM Jonayat · 24

66 66 -0.4 -0.3 -0.2 -0.1

-OSC4_TC6_Hot

68 68

68

66

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

-OSC1 TC6 Hot

NST

Time (sec)

OSC3 TC6 Hot

▲OSC6 TC6 Hot

-TC6 Hot (FLUENT) + OSC5 TC6 Hot

-TC6_Cold (FLUENT) + OSC5_TC6_Cold

0.1 0.2 0.3

Time (sec)

OSC3_TC6_Cold

▲OSC6 TC6 Cold

0

68

66

0.4 0.5 0.6

-OSC4_TC6_Cold

Model Predictions vs. Badri Measurements (Trial 32):TC3, TC4 (after shifting)

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • ASM Jonayat • 30

Evaluation of Comparison (Predictions vs Badri Measurements)

Figure : (a) 35 mm liquid slag pool with 65 mm initial powder slag layer, (b) 20 mm liquid slag pool with 35 mm initial powder slag layer

36

Model Validation with experimental data: Slag Consumption

- Model was applied to 4 different casting conditions for which the consumption data was available.
- Cases were taken from POSCO plant measurements in 2002 and 2003 from Shin*.
- For all cases the gap size was kept 0.5 mm.

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • ASM Jonayat • 37

Slag Consumption: Experimental Vs. Predicted

Table : Casting conditions, Measured and Predicted Slag Consumption*

Case	Width (mm)	Casting Speed, Vc (m/min)	Stroke (mm)	Frequency, f (cpm)	Modi ficati on Ratio (%)	Negative Strip time (s)	Positive Strip time (s)	Slag Consumpti on measured, Q (kg/m ²)	Slag Consumption measured, (kg/ms)	Slag Consumption predicted (kg/ms)	Error (%)
L1-7	1300	1.490	6.0	174	0	0.121	0.224	0.230	0.0057	0.0052	-8.8%
L1-9	1300	1.466	7.00	125.6	0	0.154	0.324	0.208	0.0051	0.0051	0%
L2-4	1300	1.484	6.47	161.2	24	0.106	0.267	0.238	0.0059	0.0053	-10.2%
L2-9	1050	1.660	6.77	178.3	24	0.097	0.240	0.194	0.0054	0.006	11.1%

Model consumption predictions agree well with plant measurements, considering possible differences in overflow details and lack of oscillation mark consumption

*Shin, Ho-Jung, S. H. Kim, B. G. Thomas, G. G. Lee, J. M. Park, and J. Sengupta, "Measurement and Prediction of Lubrication, Powder Consumption, and Oscillation Mark Profiles in Ultra-low Carbon Steel Slabs," ISIJ International, 46:11, 1635-1644, 2006.

A parametric study was done on slag consumption by varying 4 casting conditions.

- Casting Speed
- Stroke
- Frequency
- Modification Ratio

In all cases

- the gap size is kept 0.5 mm

- an initial interface between liquid slag and steel is prescribed with 6.5 mm free surface vertical distance from the shell tip.

University of Illinois at Urbana-Champaign		Metals Processing Simulation Lab	•	ASM Jonayat	•	39

Parametric Studies: Casting Speed

Casting Speed:

Casting Speed (Variable) (mm/s)	Stroke (mm)	Frequency (cpm)	Modification Ratio (%)	Negative strip time (sec)	Positive strip time (sec)	Predicted slag consumption (kg/(m.s))	Predicted slag consumption (kg/m ²)
23.3	7.00	125.6	0	0.158	0.319	0.00491	0.2107
24.3	7.00	125.6	0	0.154	0.324	0.00510	0.2099
25.3	7.00	125.6	0	0.150	0.327	0.00528	0.2087

.

- Slag consumption per unit area decreases with increase of Casting speed
- Matches plant measurements*
 8.6% increase in casting speed decreases the consumption by 1%

*Shin, Ho-Jung, S. H. Kim, B. G. Thomas, G. G. Lee, J. M. Park, and J. Sengupta, "Measurement and Prediction of Lubrication, Powder Consumption, and Oscillation Mark Profiles in Ultra-low Carbon Steel Slabs," ISIJ International, 46:11, 1635-1644, 2006.

• 40

Parametric Studies: Stroke

Stroke:

	Casting		Stroke		Frequ	uency	Modification	Negative	Positive	Predicted slag	Predicted slag
	Speed		(Variat	ole)	(cpm)	Ratio	strip time	strip time	consumption	consumption
	(mm/s)		(mm)				(%)	(sec)	(sec)	(kg/(m.s))	(kg/m ²)
	24.8		5.00		174.0)	0	0.109	0.236	0.00516	0.2081
	24.8		6.00		174.0)	0	0.121	0.224	0.00518	0.2089
	24.8		7.00		174.0)	0	0.129	0.216	0.00526	0.2121
4.0	4.5 5.0	5.5	6.0	6.5	7.0	7.5	8.0				

-	Higher slag consumption per unit are is
	predicted with increasing stroke length
-	This agrees to the works of Tsutsumi*
-	40% increase in casting stroke
	increases slag consumption by 2%.

*K. Tsutsumi, H. Murakami, S. Nishioka, M. Tada, M. Nakada and M. Komatsu: Tetsu-to-Hagané, 84 (1998), 617.

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • ASM Jonayat •

0 Atinuous Casting Consortiun

Parametric Studies: Frequency

requency:	Casting Speed	Stroke (Variable)	Frequency (cpm)	Modificatio n	Negative strip time	Positive strip time	Predicted slag consumption	Predicted slag consumption	Predicted slag consumption
Set 1:	(mm/s)	(mm)		Ratio (%)	(sec)	(sec)	(kg/(m.s))	(kg/m²)	(kg/m.cycle)
	24.3	7.00	105.6	0	0.154	0.324	0.00507	0.2086	0.0029
	24.3	7.00	125.6	0	0.161	0.408	0.00510	0.2099	0.0024
	24.3	7.00	145.6	0	0.144	0.268	0.00514	0.2115	0.0021
	24.3	7.00	165.6	0	0.133	0.229	0.00519	0.2136	0.0019
	Casting	Stroke	Frequency	Modificati	Negative	Positive	Predicted	Predicted	Predicted
Set 2:	Speed	(Variable)	(cpm)	on	strip time	strip time	slag	slag	slag
	(mm/s)	(mm)		Ratio	(sec)	(sec)	consumption	consumption	consumption
				(%)			(kg/(m.s))	(kg/m²)	(kg/m.cycle)
	24.8	6.00	104.0	0	0.130	0.447	0.00522	0.2105	0.0030
	24.8	6.00	134.0	0	0.134	0.314	0.00509	0.2052	0.0023
	24.8	6.00	174.0	0	0.121	0.224	0.00518	0.2089	0.0018

~62% increase in frequency causes slag consumption (kg/m²) to:

- sometimes increases by ~2%
- sometimes decreases by ~1%

•

41

Parametric Studies: Frequency

Tal pot	ble 3. Repo wder consu	orted effec mption (1	t of frequency	(f) and stroke	e length (S) a	m increasing
_	Kwon [22]	Wolf [26]	Tsutsumi [8]	Nakato [28]	Maeda [21]	Kitagawa [29]
f	1	1	1	1	^	*

*Rajil Saraswat, A. B. Fox, K. C. Mills, P. D. Lee and B. Deo, Scandinavian Journal of Metallurgy 2004; 33: 85-91

Empirical relations reported by Saraswat* show both increasing and decreasing trend of slag consumption per unit (kg/m²) with increase of frequency.

Increasing frequency by ~62% causes predicted consumption per cycle decrease by ~35%.

- Shin's** equation for predicting slag consumption (based on plant measurements) predicts consumption per cycle (kg/m.cycle) decreases with increasing frequency

ASM Jonayat

43

University of Illinois at Urbana-Champaign Metals Processing Simulation Lab

Parametric Studies: Modification Ratio

Modification Ratio:

uous ng onsortium

155.0 155.0 155.0	0 12 24	(sec) 0.109 0.109 0.109	(sec) 0.278 0.278 0.278	(kg/(m.s)) 0.00517 0.00522 0.00529	consumption (kg/m ²) 0.2093 0.2113 0.2142
15.0 20.0	0 25.0 0.2150 0.2140 0.2130 0.2120 0.2110 0.2100 0.2100 0.2090 0.25.0	- Moo con Moo - Suz exp - Sinu cau con	del predic sumption dification uki* obse eriments usoidal to ses an in sumption	ts increase with increa Ratio erved this be o non-sinuse crease of 2	d Ising ehavior in Didal (24%) . 3% in slag
	155.0 155.0 15.0 20.0 15.0 20.0 15.0 20.0 n Ratio (%)	(%) 155.0 0 155.0 12 155.0 24 15.0 20.0 25.0 0.2150 0.2140 0.2130 0.2120 0.2110 0.2100 0.200 0.2100 0.20	(%) (sec) 155.0 0 0.109 155.0 12 0.109 155.0 20.0 25.0 0.2150 0.2130 0.2130 0.2130 0.2120 0.2130 0.2120 0.2110 - Mod 0.2130 0.2130 0.2120 0.2110 - Suz exp - Sint cau con Mod con con Mod con Mod con Mod con Mod con Mod con Mod con Mod con Mod con con Mod con con Mod con con Mod con con con con con con con con	(%) (sec) (sec) 155.0 0 0.109 0.278 155.0 12 0.109 0.278 155.0 24 0.109 0.278 15.0 24 0.109 0.278 15.0 20.0 25.0 - Model prediction consumption 0.2120 0.2120 0.2120 - Suzuki* obset experiments 0.2120 0.2110 0.2120 - Sinusoidal to causes an in consumption 15.0 20.0 25.0 - Sinusoidal to causes an in consumption 0.2100 0.2090 - Sinusoidal to causes an in consumption	(%) (sec) (sec) (kg/(m.s)) 155.0 0 0.109 0.278 0.00517 155.0 12 0.109 0.278 0.00522 155.0 24 0.109 0.278 0.00529 15.0 20.0 25.0 - Model predicts increase consumption with increat Modification Ratio 0.2130 0.2130 0.2120 - Suzuki* observed this be experiments 0.2110 0.2100 0.2100 - Sinusoidal to non-sinuso causes an increase of 2 consumption 15.0 20.0 25.0 - M. Suzuki, H. Mizukami, T

Int., 31 (1991), 254. ASM Jonayat

^{**}Shin, Ho-Jung, S. H. Kim, B. G. Thomas, G. G. Lee, J. M. Park, and J. Sengupta," ISIJ International, 46:11, 1635-1644, 2006

Conclusions

- A transient thermo-fluid model is developed to study transient heat transfer and slag consumption in the meniscus region
- Model applied to Badri experiment reveals insight into transient behavior.
 - Steady-state model temperatures and heat flux were calibrated to match Badri experiment
 - Thermocouples near meniscus show bigger variations during each oscillation cycle
 - Model predicts temperature increase at beginning of negative strip, dropping later at different times for different positions
 - Wide variation in transient behavior is present the measured temperatures for the same grade of steels.
 - The meniscus position is important for comparing model predictions with measured values.
- Consumption prediction for realistic casting conditions matches closely with plant measurements. However, slag consumption measurements in the plant includes a lot of variance depending on how it is measured.
- Parametric studies shows model predicted effect of changing casting conditions on slag consumptions are in excellent agreement with plant observations.
- For accurate modeling of the phenomena at the meniscus, transient solidification and better measurements are essential.

Metals Processing Simulation Lab

University of Illinois at Urbana-Champaign

Future Work

- Using solidification model (FLUENT) for prediction of shell growth rather than fixing it. (This model has been verified with analytical solution for implementation)
- Defining solidification and melting zone of slag based on their temperature history.
- Apply model for different casting conditions to predict effects of each casting parameter.
- Characterization of shell growth and oscillation mark formation under the effect of oscillating mold.

45

ASM Jonavat

University of Illinois at Urbana-Champaign

Acknowledgments

47

•

ASM Jonayat

- Continuous Casting Consortium Members (ABB, ArcelorMittal, Baosteel, Magnesita Refractories, Nippon Steel & Sumitomo Metal Corp., Nucor Steel, Postech/ Posco, Severstal, SSAB, Tata Steel, ANSYS/ Fluent)
- A. W. Cramb for providing PhD Thesis of Adam Badri

Metals Processing Simulation Lab